Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.

Identifieur interne : 000757 ( Main/Exploration ); précédent : 000756; suivant : 000758

Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.

Auteurs : Nicola Giangregorio [Italie] ; Ferdinando Palmieri ; Cesare Indiveri

Source :

RBID : pubmed:23948593

Descripteurs français

English descriptors

Abstract

BACKGROUND

The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches.

METHODS

The effect of GSH and GSSG on the [(3)H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody.

RESULTS

GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37°C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC.

CONCLUSIONS

CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation.

GENERAL SIGNIFICANCE

CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.


DOI: 10.1016/j.bbagen.2013.08.003
PubMed: 23948593


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.</title>
<author>
<name sortKey="Giangregorio, Nicola" sort="Giangregorio, Nicola" uniqKey="Giangregorio N" first="Nicola" last="Giangregorio">Nicola Giangregorio</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari</wicri:regionArea>
<wicri:noRegion>70126 Bari</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palmieri, Ferdinando" sort="Palmieri, Ferdinando" uniqKey="Palmieri F" first="Ferdinando" last="Palmieri">Ferdinando Palmieri</name>
</author>
<author>
<name sortKey="Indiveri, Cesare" sort="Indiveri, Cesare" uniqKey="Indiveri C" first="Cesare" last="Indiveri">Cesare Indiveri</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23948593</idno>
<idno type="pmid">23948593</idno>
<idno type="doi">10.1016/j.bbagen.2013.08.003</idno>
<idno type="wicri:Area/Main/Corpus">000713</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000713</idno>
<idno type="wicri:Area/Main/Curation">000713</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000713</idno>
<idno type="wicri:Area/Main/Exploration">000713</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.</title>
<author>
<name sortKey="Giangregorio, Nicola" sort="Giangregorio, Nicola" uniqKey="Giangregorio N" first="Nicola" last="Giangregorio">Nicola Giangregorio</name>
<affiliation wicri:level="1">
<nlm:affiliation>CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari</wicri:regionArea>
<wicri:noRegion>70126 Bari</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Palmieri, Ferdinando" sort="Palmieri, Ferdinando" uniqKey="Palmieri F" first="Ferdinando" last="Palmieri">Ferdinando Palmieri</name>
</author>
<author>
<name sortKey="Indiveri, Cesare" sort="Indiveri, Cesare" uniqKey="Indiveri C" first="Cesare" last="Indiveri">Cesare Indiveri</name>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta</title>
<idno type="ISSN">0006-3002</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Carnitine (analogs & derivatives)</term>
<term>Carnitine (genetics)</term>
<term>Carnitine (metabolism)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cysteine (genetics)</term>
<term>Cysteine (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (genetics)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Mitochondria, Liver (genetics)</term>
<term>Mitochondria, Liver (metabolism)</term>
<term>Mutagenesis, Site-Directed (methods)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Proteolipids (genetics)</term>
<term>Proteolipids (metabolism)</term>
<term>Rats (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Carnitine (analogues et dérivés)</term>
<term>Carnitine (génétique)</term>
<term>Carnitine (métabolisme)</term>
<term>Cystéine (génétique)</term>
<term>Cystéine (métabolisme)</term>
<term>Disulfure de glutathion (génétique)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Mitochondries du foie (génétique)</term>
<term>Mitochondries du foie (métabolisme)</term>
<term>Mutagenèse dirigée (méthodes)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéolipides (génétique)</term>
<term>Protéolipides (métabolisme)</term>
<term>Rats (MeSH)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Carnitine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carnitine</term>
<term>Carrier Proteins</term>
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Proteolipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carnitine</term>
<term>Carrier Proteins</term>
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Proteolipids</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Carnitine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mitochondria, Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Carnitine</term>
<term>Cystéine</term>
<term>Disulfure de glutathion</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Mitochondries du foie</term>
<term>Protéines de transport</term>
<term>Protéolipides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria, Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mutagenesis, Site-Directed</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carnitine</term>
<term>Cystéine</term>
<term>Disulfure de glutathion</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Mitochondries du foie</term>
<term>Protéines de transport</term>
<term>Protéolipides</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Mutagenèse dirigée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Transport</term>
<term>Oxidation-Reduction</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Oxydoréduction</term>
<term>Rats</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>The effect of GSH and GSSG on the [(3)H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37°C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>GENERAL SIGNIFICANCE</b>
</p>
<p>CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23948593</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3002</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1830</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta</Title>
<ISOAbbreviation>Biochim Biophys Acta</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.</ArticleTitle>
<Pagination>
<MedlinePgn>5299-304</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbagen.2013.08.003</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0304-4165(13)00347-4</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">The effect of GSH and GSSG on the [(3)H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37°C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation.</AbstractText>
<AbstractText Label="GENERAL SIGNIFICANCE" NlmCategory="CONCLUSIONS">CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.</AbstractText>
<CopyrightInformation>© 2013.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Giangregorio</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Palmieri</LastName>
<ForeName>Ferdinando</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Indiveri</LastName>
<ForeName>Cesare</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta</MedlineTA>
<NlmUniqueID>0217513</NlmUniqueID>
<ISSNLinking>0006-3002</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011510">Proteolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C116917">acylcarnitine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C020485">proteoliposomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S7UI8SM58A</RegistryNumber>
<NameOfSubstance UI="D002331">Carnitine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002331" MajorTopicYN="N">Carnitine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008930" MajorTopicYN="N">Mitochondria, Liver</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011510" MajorTopicYN="N">Proteolipids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">1,4-piperazinediethanesulfonic acid</Keyword>
<Keyword MajorTopicYN="N">ANT</Keyword>
<Keyword MajorTopicYN="N">CAC</Keyword>
<Keyword MajorTopicYN="N">Carnitine/acylcarnitine carrier</Keyword>
<Keyword MajorTopicYN="N">DTE</Keyword>
<Keyword MajorTopicYN="N">GSH</Keyword>
<Keyword MajorTopicYN="N">GSSG</Keyword>
<Keyword MajorTopicYN="N">Glutathione</Keyword>
<Keyword MajorTopicYN="N">Glutathionylation</Keyword>
<Keyword MajorTopicYN="N">Mitochondrion</Keyword>
<Keyword MajorTopicYN="N">N-ethylmaleimide</Keyword>
<Keyword MajorTopicYN="N">NEM</Keyword>
<Keyword MajorTopicYN="N">NO</Keyword>
<Keyword MajorTopicYN="N">Pipes</Keyword>
<Keyword MajorTopicYN="N">SDS-PAGE</Keyword>
<Keyword MajorTopicYN="N">Site-directed mutagenesis</Keyword>
<Keyword MajorTopicYN="N">WT</Keyword>
<Keyword MajorTopicYN="N">adenine nucleotide transporter</Keyword>
<Keyword MajorTopicYN="N">carnitine/acylcarnitine carrier</Keyword>
<Keyword MajorTopicYN="N">dithioerythritol</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">glutathione disulphide</Keyword>
<Keyword MajorTopicYN="N">nitric oxide</Keyword>
<Keyword MajorTopicYN="N">sodium dodecyl sulfate polyacrylamide gel electrophoresis</Keyword>
<Keyword MajorTopicYN="N">wild-type</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23948593</ArticleId>
<ArticleId IdType="pii">S0304-4165(13)00347-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbagen.2013.08.003</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Indiveri, Cesare" sort="Indiveri, Cesare" uniqKey="Indiveri C" first="Cesare" last="Indiveri">Cesare Indiveri</name>
<name sortKey="Palmieri, Ferdinando" sort="Palmieri, Ferdinando" uniqKey="Palmieri F" first="Ferdinando" last="Palmieri">Ferdinando Palmieri</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Giangregorio, Nicola" sort="Giangregorio, Nicola" uniqKey="Giangregorio N" first="Nicola" last="Giangregorio">Nicola Giangregorio</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000757 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000757 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23948593
   |texte=   Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23948593" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020